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Abstract

The multiphoton detectors for the strong squeezed light vacuum axe considered. Te re-

sult is compared with the perturbation theory. It is shown that as the degree of squeezing is
incre_ed the statistic .1 factor decreues.

Multiphoton transitions in atoms due to squeezed light were analyzed for the first time by

Yansky and Yushin [1] by using perturbation theory. On the other hand, at present parametric

generators of squeezed light axe discussed [2]. They allow us to obtain high density of photons

N ,,, 1020 - 10 21 in resonator with volume V ,,, lcrn 3 for stored energy density _> l J. Although

experimentally such photon densities axe not reached, it is of interest to describe physical processes

in atoms interesting with intensive squeezed light. For the squeezed vacuum 10 >0, as is known,

N =°< 0[a+a[0 >°= [t/12(a+(a) - axe operators of appearing and disappearing of quantum of

electromagnetic field), u = [ule '÷ is squeezing parameter of Stoler unitary transformation [3, 4] of

operators_+(a)to thenewvmablesofsqueezedfieldb+(b):

b = #a+va +

b+ = u*a÷ +_,'a;lul = -IvI = = ] (1)

For the squeezing degree u ,_ 10 x° - 10 ix the criteria for application of perturbation theory

methods are not satisfied. In fact, let us coincides two level system with nonzero average dipole

moment d in the excited state (2) (neglect for simplicity the dipole moment in the ground state (1)).

The characteristic theory parameter p appearing due to multiphoton transition on the degenerate

level (2) has the form [5]
p = Fd/_ (2)

where F is the amplitude of the intensity of electromagnetic field with frequency _a. Parameter

P _> q0 (qo is the number of photons participating in the transition) is reached for N ... l020 -

102_(q0 -_ 3 - 5, d ._ 10D).

In the paper [6] the statistical factor X(o6) = W(°)/W(_) was calculated for the multiphoton

transition on the degenerated level of hydrogen atom for the source of gauss electromagnetic field

(G) and pure coherent source (5). It was shown that with the inereue of radiation intensity the

difference in statistical properties of multiphoton excitation of atom disappear. The expremon was
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received for the probability of coherent multiphoton transition in the presence of probe radiation

with intensity ._" and frequency f_ _ w :

_3 "_j 3

w('_(_) = Wj;(p) (3)

where q0 = (LX - ?t_)ff_v, LS is electron excitation energy, 7 is damping constant of excited

electron state, J,,(z) is the Bessel function of real argument. Using the formula (3) gives us

methodical adwmtage because it permits to reali=e the rearrangement of multiphoton process

with the frequency of probe radiation. Let us consider the statistical factor X(s6) = W(s)/W(6),

where W s is the transition probability under the action of squee=ed light. S - matrix formalism

is used for calculating W s. Confining to the second order of perturbation theory on the probe

radiation. We have:

wS(ft) = a_l_Tjra__:oo dtexp[iqowt-_t]l'(t) (4)

where I°(t) is generating function of transition probability:

rCt) =< oct) >.

The evolution operator G(t) satisfied the motion equation:

il_C_r(t) -- [g(t)a + 9*(t)a+]G(t); G(O) = 1

g(t) = i,_-"';,, = a=(2,r_/V)_/'
(5)

The brackets < ... > in (5) denote the averaging over squeezed state, d==in (5) is dipole moment

in electronic state (2), dz_ _ 10e0a0 for the level with the main quantum number n = 3(a0 is the

Bohr radius, e0 is the electron charge). The solution to (5) may be presented in the following

normally ordered form [7]:

G(t) = eA(t)e-a'(t)=*ea(t)=

B(t) = -_ d,.g(,-)

A(t) = - e,-_ d,-=g(,'Ag'(-,)
?l-

(s)

Let us use back transition to (1):

a = ta*b-vb +

a + = gb + - v°b

With the Backer- Hausdorff transformation

e A . e B

[[A,B],A]
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it is easy to recieve the following expression for the generating function/(') of quantum transition

under the action of squeezed light

_')(t) = I<0%).</_[:(B_+8-_)b÷_(B'_'+_')_I/9>.

_o.)(t)= exp{-l,l_IBl_- _(B_,"+ c.c.)} (7)

The value /5 characterizes the initial coherent state [/9 > . In the case of squeezed vacuum we

have/(°)(t) = f0')(t). The received exact expression for the generating function/'(°)(t) does not

permit to make analytical calculation of the transition probability and creates certain difficulties
for numerical calculations. This expression differs from the known formulas in [7,8] obtained

in perturbation theory in two positions. Firstly, in (7) the reemitting of photons is taken into

account, secondly, anomaly correlation functions with nonequal number of operators a and a are

not discarded. The first condition for the strong field is strictly necessary. The second condition

may be used for both weak and strong fields, as will be shown below. Taking into consideration

the remarks let us simplify the common expression for the transition probability. Present formula

(6) in antinormal form and rewrite _°)(_) :

fo')Ct) (_I),,,IBI2., < Ol_'_a_lO>° +
= _-I_,I'_('_!)_,-, .

T_.----0

® (_I)_.B....B_ < 01a_:"10>.
"+" e-IBP Z ra!n! J

(8)

The presentation of the evolution operator G(t) in antinormal form is caused by simplicity of

calculations, for example:

The last term in (8) is the contribution of anomaly correlation functions and do not gives the

contribution in multi-photon processes. Thus, we leave the first member in (8). We find:

f0,)(,) _ _-l_t.laI'.lo(iBl*_.l.l) Co)

where 10(z) is modified Bessel function. Let us consider the photon density Iv[ _ 1 corresponding

to perturbation theory. In this case (see Appendix) it may be shown that statistical factor (X(.6))

W(,)
x(.6)= _-_ = (2qo- 1)!! (1o)

This result coincides with the known conclusion in [1]. In Fig. ] the calculation of statistical factor

xo_) in nonperturbative approach is given. Dashed line corresponds to perturbation theory. For

comparison the same Fig. 1 gives the statistical factor X(o6). Naturally, near field intensity which

corresponds to the suppression coherent multiphoton excitation effect [10], the statistical factor

increases drastically, which creates additional possibilities for experiment.
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Fig.l. Dependence of X on =1_12.curve 1 corresponds x(,_); 2 -X(o,o

Appendix

Let us use the expression for the multiplication of coherent state [_ > end squeezed state l# >.

1 1 2
< _I#>.=_-__-e_ {-_(I_I+ I#I2+ v__.2+ _#2)+ is*#}

Rewrite A,_m as:

1 f

A,_., /#o, lo_12"1< o1_> t2

'/o°- - _ze-'x'lo(x

108



(d2a = d(Rea)d(lma) - is the measure of integration in complex plane or. So, the generating

function may have the form:

1

After calculating this integral we obtain the generating function (9). Let us use the summation

formula for the Bessel function [11]:

+CO

Jo(2asinz/2)="- _ d_(a)e _'=

Let write the expression for the mu]tiphoton trsnsition probability W(') under the action of the

squeezed light:

here we denote:

1___= F,n6(qo - m) _- l F_W (') ~ "_

= _/(r_) 2

The last integral is known [11]. We receive:

W 0 )
,. 1 a'_ _ ° 1 (_._)2k(2k+qo)!X(q0!) _ = 2_(k!) _

x :_F2(qo + 112, qo + 2k + 1; qo + 1, 2qo + 1; -4a),

where 2F2 is the common hipergeometrical series. At a _ 1, 2F2 _ 1. We use the integral

representation for the factorial. It is possible to sum up the series:

w(') ~ (_)® •P®(_)
q0_

In the approximation Iv I _ 1 (/_ _ 1). Let us use theP®(/_) is the Legandre polynomial.

asymptotic expression [I I]:

W (°) ._

We receive:

p_(p) = (2qo -- 1,!!/._
qo!

(a#2)_(2qo- 1)!!= W(6)(2qo- 1)!!
(q0!)2
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